ANOTHER POSSIBILITY OF CONSERVED-VECTOR-CURRENT HYPOTHESIS VERIFICATION

A.Z.Dubničková, S.Dubnička, M.P.Rekalo*

Based on the conserved-vector-current (CVC) hypothesis and a four- ρ -resonance unitary and analytic VMD model of the pion electromagnetic form factor, the behaviour of a total cross section and energy distribution of the final state pions of $\overline{v_ee}^- \rightarrow \pi^-\pi^0$ process are predicted theoretically for the first time. An experimental confirmation of the latter could provide another reliable method of CVC-hypothesis verification for all energies above the two-pion threshold.

The investigation has been performed at the Laboratory of Theoretical Physics, JINR.

Другая возможность проверки гипотезы сохранения векторного тока

А.З.Дубничкова, С.Дубничка, М.П.Рекало

На основе гипотезы сохранения векторного тока (CBT) и унитарной и аналитической ВМД-модели с четырьмя ρ -резонансами для описания электромагнитного формфактора пиона впервые теоретически предсказывается поведение полного сечения и энергетическое распределение пионов в конечном состоянии и процессе $\bar{\nu}_e e^- \rightarrow \pi^- \pi^0$. Экспериментальная проверка предсказанного представляет другой метод проверки CBT-гипотезы для всех энергий выше двухпионного порога.

Работа выполнена в Лаборатории теоретической физики ОИЯИ.

In the V-A theory of weak interactions [1] the hadronic charged weak current J_{μ}^{W} is a compound of vector V_{μ} and axial-vector A_{μ} currents. In the second half of the fifties the conserved-vector-current (CVC) hypothesis

$$\partial_{\mu}V_{\mu} = 0 \tag{1}$$

was postulated $\{2,3\}$ in order to explain an approximate numerical equality of the muon decay constant G^{μ} and the neutron decay vector constant $G^{(\nu)}$. Later on the CVC-hypothesis manifested to be very powerful. Here we

^{*}Kharkov Institute of Physics and Technology, Kharkov, Ukraine

notice only the relation between a matrix element $\langle \pi^0 | V_{\mu} | \pi^+ \rangle$ and a matrix element $\langle \pi^+ | J_{\mu}^E | \pi^+ \rangle$ of the electromagnetic (e.m.) current J_{μ}^E following directly from (1), which finally leads to the relation

$$F_{\pi}^{W}(s) = \sqrt{2} F_{\pi}^{E,I=1}(s)$$
 (2)

between the weak pion form factor (ff) $F_{\pi}^{W}(s)$ of a virtual W^{-} -boson transition $(W^{-})^* \rightarrow \pi^{-}\pi^{0}$ and the pure isovector e.m. pion form factor $F_{\pi}^{E,I=1}(s)$ of a virtual photon $\gamma^* \rightarrow \pi^+\pi^-$ transition, where $\sqrt{2}$ is a Clebsch-Gordan coefficient of the SU(2) isotopic group. The relation (2) has shown to be very useful. There are neither data on $F_{\pi}^{W}(s)$ nor an accomplished theory, nor a phenomenology giving a reliable behaviour of the weak pion ff. On the other hand, the behaviour of the e.m. pion ff is understood from the experimental (for a compilation see [4]) and phenomenological points of view [5,6] quite well. So, the relation (2) already in an early stage allowed [2,3] to predict a probability of the pion beta-decay $\pi^+ \rightarrow \pi^0 e^+ v_e$. Its experimental confirmation [7] is now presented as one of the brilliant demonstrations of a general validity of the CVC-hypothesis in the weak interaction theory. However, there is a release of a negligible amount of energy in the pion beta-decay and in fact one is authorized to speak about a CVC-hypothesis verification only in surroundings of $s \approx 0$.

To validate experimentally the CVC-hypothesis outside this restricted region, we propose here to investigate the weak $\bar{\nu}_e e^- \rightarrow \pi^- \pi^0$ process. Its threshold energy is $E_{\nu}^{(0)} \approx 2m_{\pi}^2/m_e \approx 76.7$ GeV and so, it is already attainable experimentally on existing accelerators.

The differential cross-section of the weak $\overline{\nu}_e e^- \rightarrow \pi^- \pi^0$ reaction in the c.m. system is given by the expression

$$\frac{d\sigma}{d\Omega} = \frac{1}{(2s_{\bar{\nu}} + 1)(2s_e + 1)} \frac{1}{64\pi^2 s} \frac{k}{p} \sum_{S_{\bar{\nu}}, S_e} |M|^2, \qquad (3)$$

where $s \ge 4m_{\pi}^2$ is the c.m. energy squared, $k = ((s - 4m_{\pi}^2)/4)^{1/2}$ is the length of a 3-dimensional momentum of produced pions, $p = (s/4)^{1/2}$ is the length of a 3-dimensional neutrino-momentum and $s_{\overline{v}}$ and s_e are spins of the antineutrino and electron, respectively. The matrix element *M* in the lowest order of a perturbation expansion can be calculated from the Feynman diagram presented in Fig.1a, that for $s << m_{W}^2$ is reduced to a contact diagram presented in Fig.1b.

Fig.1. The lowest order perturbation expansion Feynman diagram giving a dominant contribution to the weak $\overline{\nu}_e e^- \rightarrow \pi^- \pi^0$ process

It takes the form

$$M = \frac{G}{\sqrt{2}} \bar{\nu}_{e}(p_{2}) \gamma_{\mu} (1 + \gamma_{5}) e(p_{1}) (k_{1} - k_{2})^{\mu} F_{\pi}^{W}(s), \qquad (4)$$

where $G = 1.1663 \cdot 10^{-5} \text{ GeV}^{-2}$ is the weak interaction Fermi constant. The expression (4) leads to

$$\frac{d\sigma}{d\Omega} = \frac{G^2}{128\pi^2} s \beta_\pi^3 |F_\pi^W(s)|^2 \sin^2\theta, \qquad (5)$$

where $\beta_{\pi} = (1 - 4m_{\pi}^2/s)^{1/2}$ is the velocity of produced pions and θ is the scattering angle in the c.m. system. To predict a behavior of $\sigma_{tot}(E_{\nu}^{lab})$, first

Fig.2. The predicted by (6) behaviour of the total crosssection of the $\bar{\nu}_{e}e^{-} \rightarrow \pi^{-}\pi^{0}$ process at the laboratory system

we multiply (5) by $d\Omega = \sin \theta \, d\theta \, d\varphi$, then integrate over angles θ and φ and finally substitute the expression (2) (generally valid for $-\infty < s < +\infty$) and the relation $s = m_e^2 + 2m_e E_v^{\text{lab}}$. As a result, one gets

$$\sigma_{\rm tot}(E_{\nu}^{\rm lab}) = \frac{G^2}{24\pi} \left(m_e^2 + 2m_e E_{\nu}^{\rm lab} \right) \beta_{\pi}^3 |F_{\pi}^{E,I=1}(E_{\nu}^{\rm lab})|^2 \tag{6}$$

from which, by using four- ρ -resonance unitary and analytic VMD model [6] of the pion e.m. ff, the behaviour of $\sigma_{tot}(E_{\nu}^{lab})$ in the laboratory system as shown in Fig.2 is predicted.

Besides the $\sigma_{tot}(E_{\nu}^{lab})$ it is interesting also to predict an energy distribution of the pions created in the weak $\overline{\nu}_e e^- \rightarrow \pi^- \pi^0$ process to be given by $d\sigma/dE_{\pi}^{lab}$. The latter is obtained from (5), first by integration over the φ angle and then by substitution of the relations

$$d \cos \theta = -\frac{m_e}{k^{c.m.} p^{c.m.}} dE_{\pi}^{lab}; \quad s \approx 2m_e E_{\nu}^{lab};$$

$$\sin^2 \theta = 1 - \frac{(E_{\pi}^{c.m.} E_e^{c.m.} - m_e E_{\pi}^{lab})^2}{(k^{c.m.})^2 (p^{c.m.})^2} dE_{\pi}^{lab},$$
(7)

Fig.3. The predicted behaviour of the energy distribution of pions as given by (8)

where

$$E_{\pi}^{\text{c.m.}} \approx E_{e}^{\text{c.m.}} \approx p^{\text{c.m.}} \approx \sqrt{\frac{m_e}{2}} E_{\nu}^{\text{lab}} \text{ and } k^{\text{c.m.}} \approx \sqrt{\frac{m_e}{2}} (E_{\nu}^{\text{lab}} - E_{\nu}^{(0)}).$$

Consequently, one gets the expression

$$\frac{d\sigma}{dE_{\pi}^{\text{lab}}} = \frac{m_e G^2}{8\pi} \left(\frac{E_{\nu}^{\text{lab}} - E_{\nu}^{(0)}}{E_{\nu}^{\text{lab}}} \right) \left\{ 1 - \frac{(E_{\nu}^{\text{lab}} - 2E_{\pi}^{\text{lab}})^2}{E_{\nu}^{\text{lab}}(E_{\nu}^{\text{lab}} - E_{\nu}^{(0)})} \right\} + F_{\pi}^{E,I=1}(E_{\nu}^{\text{lab}}) \right\}^2$$
(8)

from which the energy distribution of the final state pions of the reaction $\bar{\nu}_e e^- \rightarrow \pi^- \pi^0$ at four different energies corresponding just to $\rho(770)$, $\rho'(1450)$, $\rho''(1700)$, $\rho'''(2150)$ resonances is calculated. The results are graphically presented in Fig.3.

The experimental approval of our predictions for $\sigma_{tot}(E_{\nu}^{lab})$ and $d\sigma/dE_{\pi}^{lab}$ could validate the CVC-hypothesis for all investigated energies above the two-pion threshold.

References

- 1. Bernstein J. Elementary Particles and Their Currents, Freeman, San Francisco, 1968.
- 2. Gernstein S.S., Zeldowich Ya.B. ZhETP, 1955, 29, p.698.
- 3. Feynman R.P., Gell-Mann M. Phys.Rev., 1958, 109, p.193.
- Dubničková A.Z., Dubnička S., Khasin B.I., Mäsiar P. Czech. J.Phys., 1987, B37, p.815.
- 5. Dubnička S., Furdík I., Meshcheryakov V.A. JINR Preprint, E2-88-521, Dubna, 1988.
- 6. Biagini M.E., Dubnička S., Etim E., Kolář P. Nuovo Cim., 1991, A104, p.363.
- 7. Review of Particle Properties, Phys.Lett., 1990, B239, April.

Received on October 16, 1992.